2030 Greenship-K Promotion Strategy
The 1st National Plan for the Development and Popularization of Green Ship

February 9th, 2021

Junkeon Ahn, PhD
KOMSA Researcher
1. Background
2. Technology Development
3. Test Infrastructure
4. Greenship-K Project
5. Green-fuel Supply Chain
6. Market Activation
7. Expected Effect
According to ‘the Act on Development and Popularization of Green Ship (Promulgation No. 16167),’

- “Minister of Trade, Industry and Energy and Minister of Oceans and Fisheries formulate the national plan per five years.”
- “The national plan shall have the R&D roadmap, long-term objectives, infrastructure for power sources, etc.”
Based on the Act,

➢ The Government of the Republic of Korea plans to invest $870 million (2022 - 2031) for the innovative R&D program of green ships considering life-cycle.
The Government of the Republic of Korea has established ‘the Green New Deal’ to achieve net-zero emissions and accelerates the transition towards a low-carbon and green economy.

- Green Transition of Infrastructure
 - Zero-energy building
 - The ecosystems
 - Clean and safe water

- Low-carbon and Decentralized Energy
 - Efficient energy management
 - Renewables and Fair transition
 - Hydrogen vehicles, etc.

- Innovation in the Green Industry
 - Low-carbon industrial complexes
 - Foundation for green innovation

Source: Korean New Deal (2020)
There are three goals to secure the future green ships:

- Carbon-free technology with hydrogen, ammonia, etc.
- Low-carbon technology with fuel mixture, energy-saving device, etc.
- Localisation of the core technology about LNG, electrification, and hybridisation.

Source: KOMSA (2021)
- The R&D results will be the basis of testing and inspection standards.
- New technology will be verified by onshore facilities before a marine application.

Source: KOMSA (2021)
A marine testbed tests the technology developed to prove the feasibility.
Low-carbon technology may have the following cases:

- ① LNG + Gas engine + Electrical propulsion,
- ② LNG: NH₃ + Multifuel engine + Mechanical propulsion,
- ③ MGO: NH₃ + Multifuel engine + Mechanical propulsion,
- ④ LPG + Gas engine + Electrical propulsion,
Low-carbon technology may have the following cases:

- LNG\(^4\)H\(_2\) + Gas turbine + Electrical propulsion,
- LNG + Gas engine + Hybrid propulsion,
- Etc.
Carbon-free technology may have the following cases:

- Hydrogen + Fuel cell + Electric propulsion,
- \(\text{NH}_3\) + Fuel cell + Electric propulsion,
- \(\text{NH}_3\) + Gas engine + Mechanical propulsion,
- Battery ESS + Electrical propulsion,
- Etc.
- LNG bunkering capability grows up to 1,400,000 tons per year in 2030.
 - The small-scale bunkering vessel (500 m³) supplies LNG fuel to coastal ships.
 - The major ports (Busan, Ulsan, etc.) will have onshore facilities for LNG bunkering.
- Alternative maritime power supplies the ship`s hotel loads as well as will charge the battery of a fully-electric ship.
- A testing facility of H₂ (or NH₃) will be the basis of a large-scale bunkering service.
Ships that the Government-owned should take eco-friendly technology;
- Newbuilt green ships replace the old-fashioned ships (over 26 years),
- Ships in service will take exhaust treatment equipment (SCR, DPF, etc.).

Merchant ships can have the benefits:
- New Deal Fund, Financial Incentive, and Tax Reduction.

Source: KOMSA (2021)
The global marine sector shall halve the absolute GHG emissions by 2050 compared to 2008 (baseline).

- The international shipping GHG reduction should be achieved based on decarbonised fuel, ship efficiency, carbon market, etc.

<table>
<thead>
<tr>
<th>Year</th>
<th>2008</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG %</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

1.5 °C warming target

IMO ambition of 40% carbon intensity reduction

IMO ambition of 70% carbon intensity reduction

Net Zero
Thank you for your attention.

February 9th, 2021

Junkeon Ahn, PhD
KOMSA Researcher