

Update on the IMO Future Fuels & Technology Project (FFT Project)

Air Pollution and Energy Efficiency Team

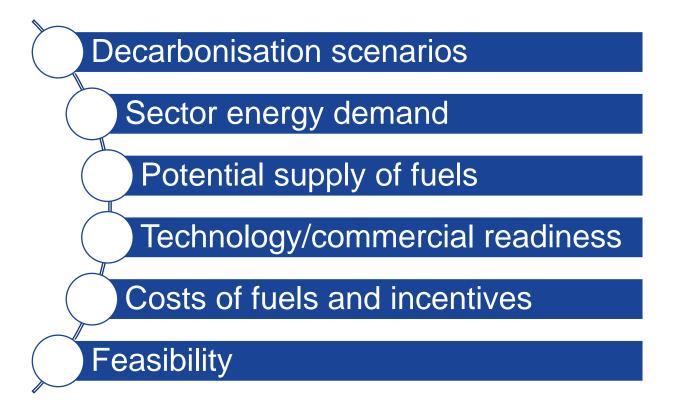
Marine Environment Division, IMO Secretariat

22 | 3 | 2023

Study on the readiness and availability of low- and zero-carbon technology and marine fuels

Update and preliminary outputs, 22nd March 2023

Tim Scarbrough Ricardo Tore Longva DNV

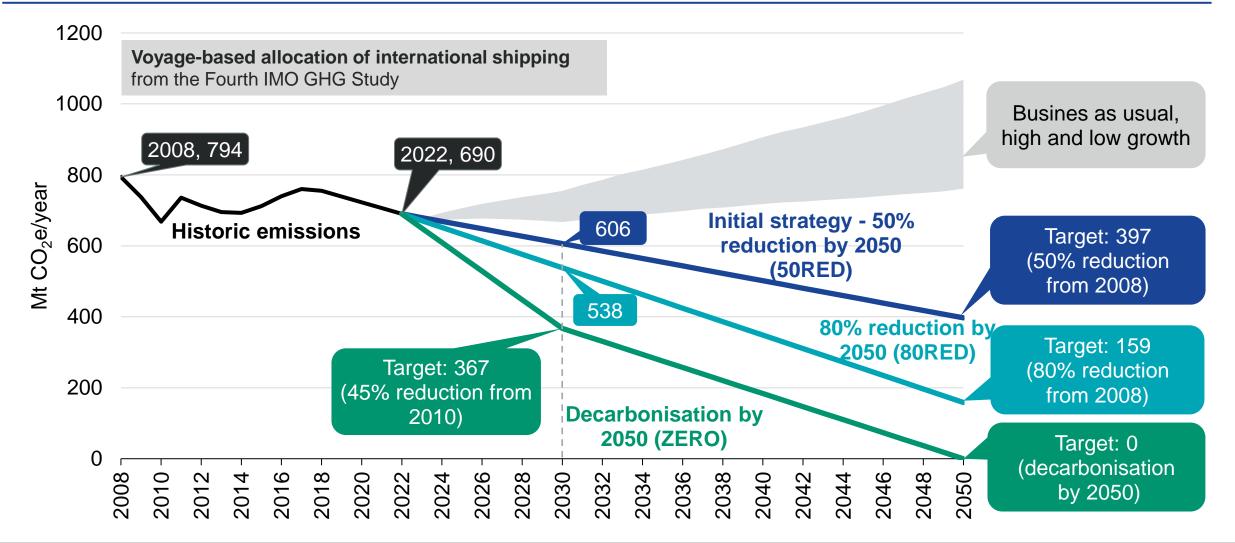

CONTENTS

Vhat Are The Pathways To Decarbonise (Demand)?

How Could We Meet These Pathways (Supply)?

Feasibility of Meeting The Pathways

- Study is part Future Fuels and Technology project (FFT Project)
- Aim: assess state of availability and readiness of low- and zero-carbon ship technology and marine fuels
- Context: provides evidence for use in revision of Initial GHG Strategy
- Study conducted January to March 2023

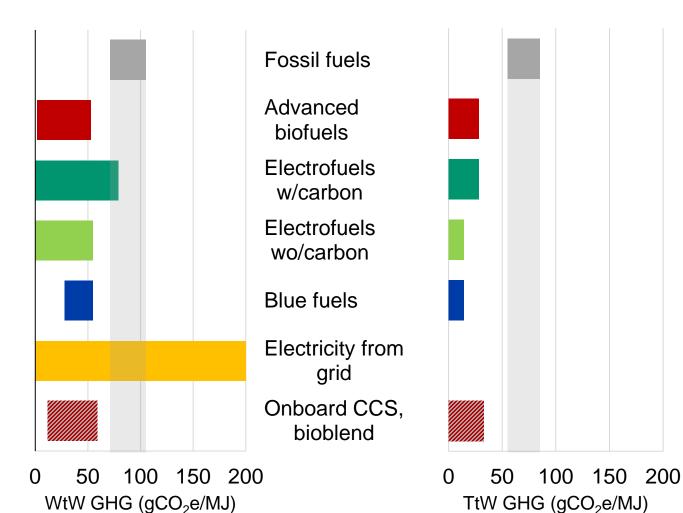

CONTENTS

What Are The Pathways To Decarbonise (Demand)?

How Could We Meet These Pathways (Supply)?

Feasibility of Meeting The Pathways

Three working decarbonisation scenarios as options to bound the potential Revised Strategy

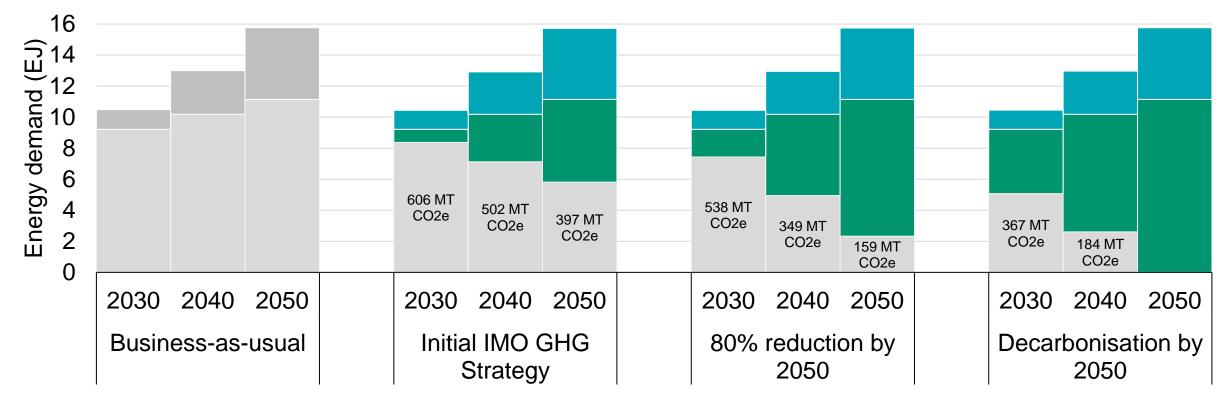

RICARDO

DNV

6 © Ricardo plc 22 March 2023

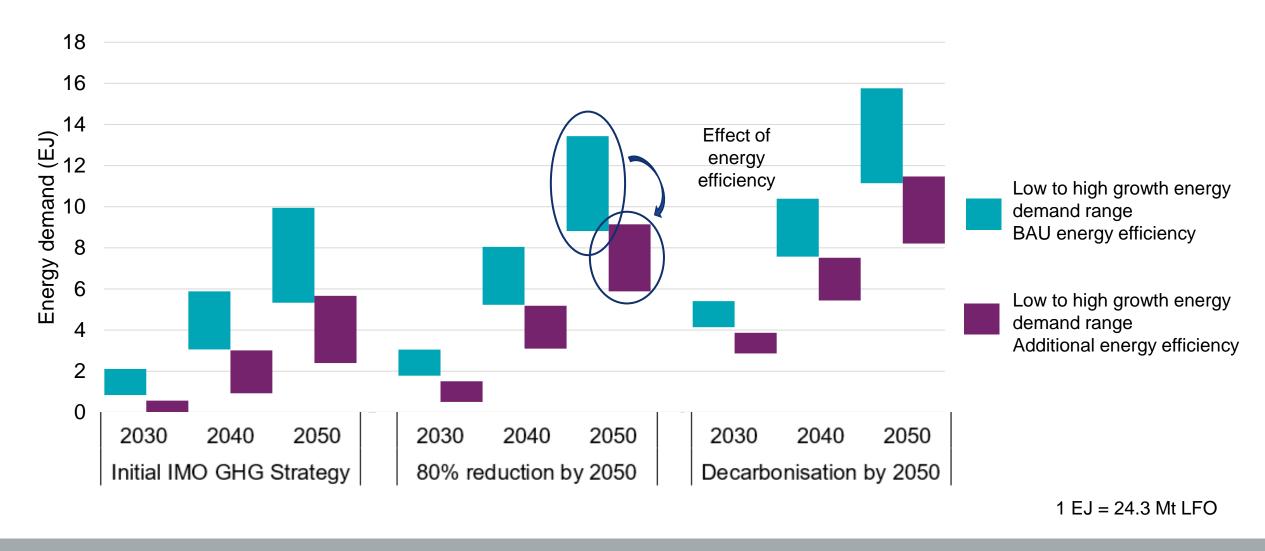
ED17328

Candidate fuels identified based on well-to-wake and tank-to-wake GHG emissions



- Candidate fuels identified from review of WtW and TtW emissions
- 2. Candidate fuels have significantly reduced WtW emissions.
- 3. For the purpose of achieving the targets, candidate fuels are assumed to have zero TtW GHG emissions
- 4. No carbon credits / offsets from other sectors
- 5. Includes CO_2 , CH_4 and N_2O , based on GWP100
- 6. Not prejudging whether Revised GHG Strategy should cover WtW or TtW

GHG reduction targets determine maximum amount of fossil fuel and minimum energy to be supplied by candidate fuels or energy demand reduction



- Candidate fuels and energy efficiency (high growth additional demand)
- Candidate fuels and energy efficiency (low growth)
- Fossil fuels 1 EJ = 24.3 Mt LFO

ED17328

30% speed reduction and implementing all available energy efficiency measures can reduce demand by 15-27% but still high demand for candidate fuels to meet the decarbonisation ambitions

DNV

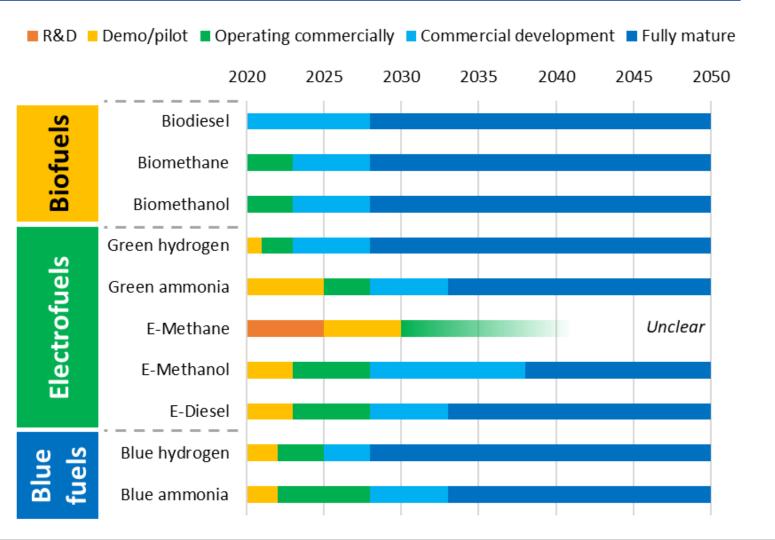
ED17328

CONTENTS

/hat Are The Pathways To Decarbonise (Demand)?

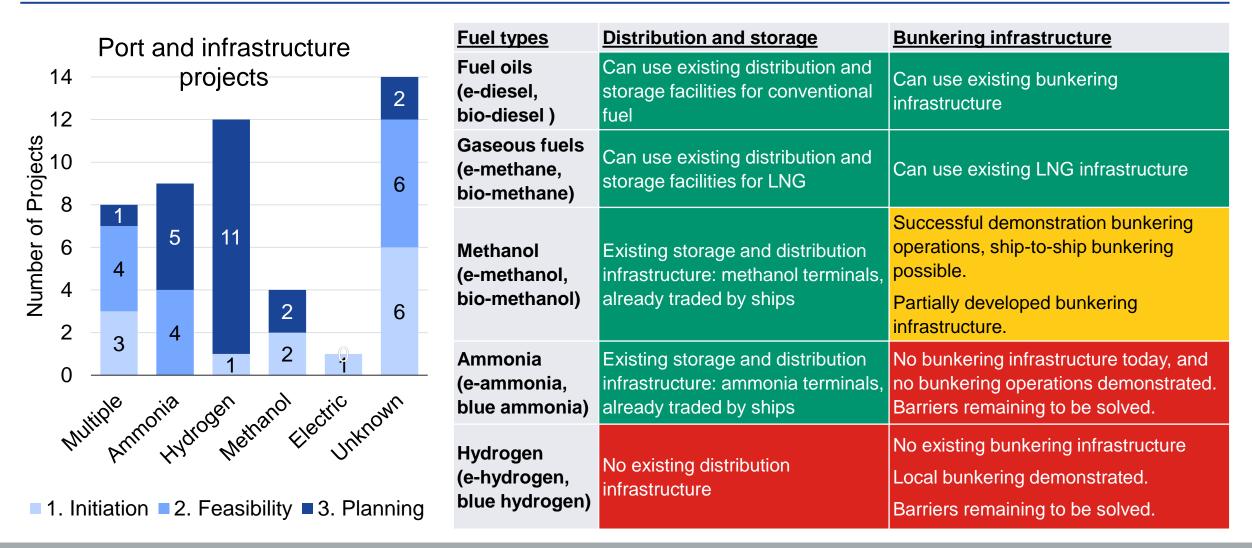
How Could We Meet These Pathways (Supply)?

Feasibility of Meeting The Pathways

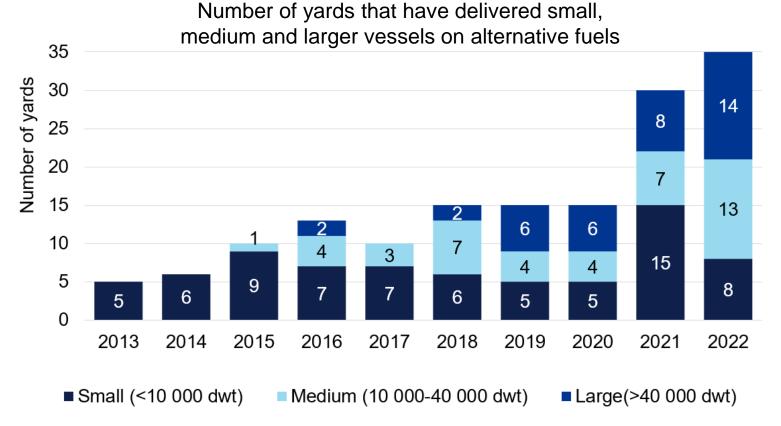

Technology Readiness Levels (TRL) extended to accommodate Commercial Readiness Level (CRL)

Maturity	Rating	Description of readiness level
Basic research	TRL1	Basic principles of scientific research observed and reported
	TRL2	Invention and research of practical application
	TRL3	Proof of concept with analytical and experimental studies to validate the critical principles of
	TRES	individual elements of the technology
Development	TRL4	Development and validation of component in a laboratory
-	TRL5	Pilot scale testing of components in a simulated environment to demonstrate specific aspects
		of the design
	TRL6	Prototype system built and tested in a simulated environment
Demonstration	TRL7	Prototype system built and validated in a marine operational environment
	TRL8	Active commissioning where the actual system is proven to work in its final form under
	INLO	expected marine operating conditions
Deployment:	TRL/CRL9	Operational application of system on a commercial basis – technically ready but limited
early adoption	TINL/ONL9	number of vessels/first-of-a-kind facilities
		Integration needed at scale: solution is commercial but needs further integration efforts to
	CRL10	achieve full potential – may be 100's or a few 1000 vessels or small number of at-scale
		facilities, small share of market
Mature	CRL11	Proof of stability reached, with predictable growth

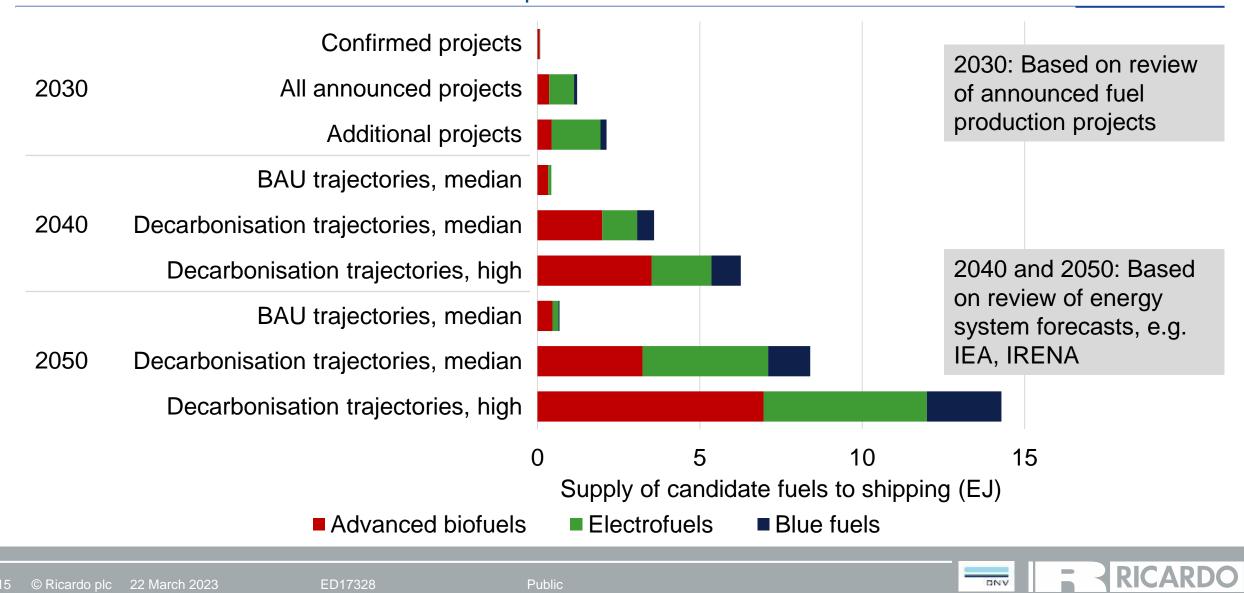
The technologies and fuels needed to meet the demand will be commercially ready in time, and earlier than shown if a clear signal of demand is given


- Reviewed 100+ literature sources and consulted / validated with stakeholders
- Evaluated forecast readiness (TRL/CRL):
 - Energy saving and efficiency technologies
 - Fuel production pathways
 - Propulsion tech.: engines and fuel cells
 - Onboard carbon capture
- These graphics are forecasts based on today's situation (ambition, policies)

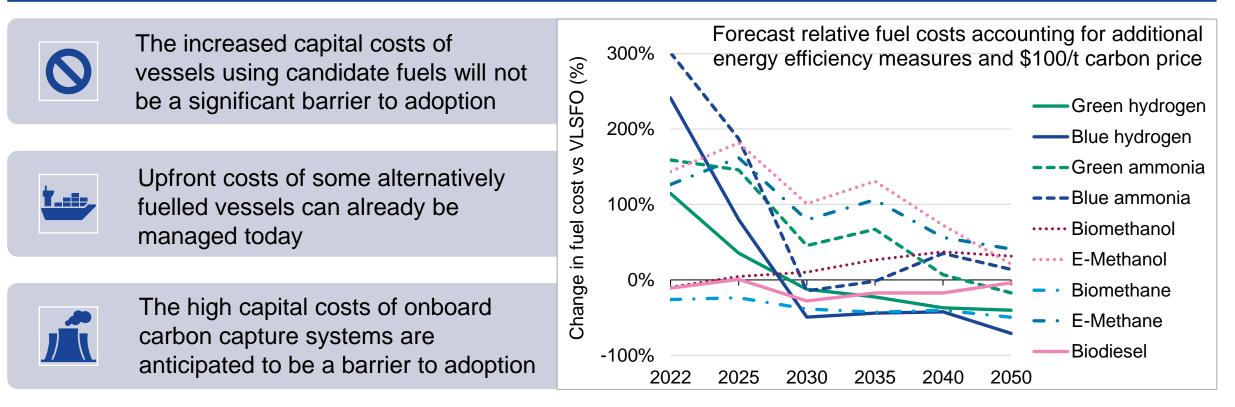
ED17328


Existing orderbook drives demand for bunker facilities 48 candidate fuel production projects identified

Shipyards can scale up to match candidate fuel roll-out



- Increasing number of alternatively fuelled vessels being built
- Diversifying number of shipyards delivering candidate-fuelled vessels
- Historically yards have been able to increase production significantly in a short time
- Capacity to scale up the production and installation of energy converters, energy efficiency technologies and onboard CCS plants over short time periods once demand is clear


ED17328

Potential for significant supply of energy to achieve decarbonisation scenarios but depends on firm demand

If there is a clear signal of demand,

the price differential of candidate fuels is not a barrier to their uptake for the shipping industry

Higher prices of candidate fuels on their own are not a barrier: the barrier is the current uncertainty, in the absence of a clear demand signal, of when and by how much fuel prices could change.

ED17328

CONTENTS

Vhat Are The Pathways To Decarbonise (Demand)?

How Could We Meet These Pathways (Supply)?

Feasibility of Meeting The Pathways

	Initial IMO GHG Strategy:		Feasibl	e with in	creased p	oolicy	/ ambi	tion	
2030 feasibility	80% reduction by 2050:		Feasibl	e with in	creased p	oolicy	/ ambi	tion	
	Decarbonisation by 2050:	×	Major g	japs					
En	nergy demand (low to high s	eaborne	trade g	rowth ra	ange)				
	BAU energy efficiency								
Initial IMO GHG strategy	Additional energy efficiency								
2001 reduction by 2050	BAU energy efficiency			·					
80% reduction by 2050	Additional energy efficiency								
Departure by 2050	BAU energy efficiency								
Decarbonisation by 2050	Additional energy efficiency								
Aggregated candidate fuel supply									
	Confirmed projects								
	Announced projects								
	Additional projects								
Electricity (shore power from gr	id) Advanced biofuels	0	1	2	3	4	5	5	6
 E-fuels Ønboard CCS 	■ Blue fuels	0	•	Energy	demand (
© Ricardo plc 22 March 2023	ED17328 Public				_	DNV		RICA	

	Initial IMO GHG Strategy:		Feasible with incre	ased policy	ambition	
2040 feasibility	80% reduction by 2050:	Feasible with increased policy ambition				
	Decarbonisation by 2050:		Feasible with incre	ased policy	ambition	
En	ergy demand (low to high sea	aborne	trade growth rang	e)		
Initial IMO GHG strategy	BAU energy efficiency Additional energy efficiency					
80% reduction by 2050	BAU energy efficiency Additional energy efficiency					
Decarbonisation by 2050	BAU energy efficiency Additional energy efficiency					
	Aggregated candida	ate fue	supply			
	BAU trajectories, median onisation trajectories, median arbonisation trajectories, high					
 Electricity (shore power from grid E-fuels Onboard CCS 	d) Advanced biofuelsBlue fuels		5 Energy dem	10 and (EJ)	15 1 EJ = 24.3 Mt LF0	

	Initial IMO GHG Strategy:			th increased po	•			
2050 feasibility	80% reduction by 2050:		Feasible wi	th increased po	olicy ambitic	on		
	Decarbonisation by 2050:		Feasible wi	th increased po	olicy ambitic	on		
Energy demand (low to high seaborne trade growth range)								
	BAU energy efficiency							
Initial IMO GHG strategy	Additional energy efficiency							
000/ marketion has 0050	BAU energy efficiency							
80% reduction by 2050	Additional energy efficiency							
December is ation by 0050	BAU energy efficiency							
Decarbonisation by 2050	Additional energy efficiency							
	Aggregated candid	ato fuol	supply					
	Ayyreyateu canulu		Suppry					
	BAU trajectories, median							
Decarbo	onisation trajectories, median							
Deca	urbonisation trajectories, high							
Electricity (shore power from gr)	5	10	15	20		
E-fuels Onboard CCS	Blue fuels		Enei	rgy demand (E	J) 1 EJ = 2^{4}	4.3 Mt LFC		

CONTENTS

Vhat Are The Pathways To Decarbonise (Demand)?

How Could We Meet These Pathways (Supply)?

Feasibility of Meeting The Pathways

- Achieving a more ambitious decarbonisation pathway than BAU is not limited by commercial readiness of alternative fuels and technologies, nor infrastructure and shipyard readiness
 - Current forecasts of readiness would accelerate if increased demand is agreed
- A clear signal of demand is needed to enable sufficient supply of candidate fuels.
 - E.g. Revised Strategy AND policies to achieve this, including on energy efficiency measures
 - Clear signal of demand needed very soon to enable meeting interim targets of the decarbonisation scenarios
- All three decarbonisation scenarios considered in this paper are expected to be feasible in 2040 and in 2050 if policies to deliver an increased level of ambition are implemented in the short term
- The higher cost of candidate fuels than conventional fuels is not a barrier to deployment if the demand signal is clear.

Decarbonisation scenario	2030		2040	2050			
Initial IMO GHG		Feasible with increased	Feasible with increased		Feasible with increased		
strategy		policy ambition	policy ambition		policy ambition		
80% reduction		Feasible with increased	Feasible with increased		Feasible with increased		
by 2050		policy ambition	policy ambition		policy ambition		
Decarbonisation	X	Major gaps	Feasible with increased		Feasible with increased		
by 2050			policy ambition		policy ambition		

ED17328

Thank you – any questions, comments, follow-ups:

ED17328