

Research Background

Research on Ship URN in Korea

- The IMO has set a goal for net zero GHG emission by 2050, and is putting an effort to reduce GHG by introducing mandatory measures and indices EEDI, SEEMP, EEXI and CII.
- In the meantime, discussions were underway to address and minimize adverse impacts of underwater radiated noise from shipping.
- After the 2014 URN guidelines were published, KRISO has been developing URN-related technologies, including numerical prediction, model scale and full scale URN test.
- In these days, more attention has been paid to the URN, especially from shipyards, and the need for developing relevant technologies has been increasing.
- A national project was launched in Korea, which focused on developing URN monitoring and mitigation methods.

Ship URN monitoring based on on-board sensor

Ship URN mitigation method

Research Background

Korea Ship URN Research Project

- Project title: Development of Ship underwater noise monitoring and noise reduction technology
- Project duration: 42 months (Jul. 2020 ~ Dec. 2023)
- Budget: \$ 4.3M (funded by Korea Government and co-funded by industrial participants)
- · Coordinator: Dr. Hanshin Seol, Korea Research Institute of Ships and Ocean Engineering

Measured URN

Project objectives & Results #1

• Identification of current underwater radiated noise level from ships

- Full scale underwater radiated noise measurements for various type ships (measured with ISO standard)
- Class Societies' URN notation awarded (DNV SILENT-E notation, ABS UWN(Q) notation…)

Project objectives & Results #2

Development of a ship URN monitoring method using on-board sensors

- Estimation of underwater radiated noise using on-board noise and vibration signals
- Comparison and validation of the method with measured URN following ISO standard
- Generally good agreement at all load conditions
- More validation measurements should be followed to ensure the reliability
- The results of this technology were registered as an information document at the 9th SDC meeting

Research Background

Project objectives #3

Development of ship URN mitigation technology

- Analysis of ship EE-URN relationship according to ship design perspective (propeller, ESD design..)
- Development EE-URN improvement device to improve energy efficiency and underwater radiated noise
- Performance evaluation at model and full scale measurements (test)

Noise Source of Ship URN

How to control Propeller cavitation: Propeller design or ESD ?

- Because the propeller operate behind the vessel, propeller cavitation is affected by the hull wake and propeller geometry
- To reduce ship's URN, one has to improve the propeller geometry or hull wake
- Reducing URN by changing the propeller design would be limited
- ESD designed from the perspective of propulsion efficiency generally increase the URN by increasing the propeller loading

♦ Vortex generator as an URN Reduction Device

- In the shipbuilding industry (ship design), V.G. is being used as a propeller inflow improvement device when excessive hull vibration or propeller erosion occurs due to excessive propeller cavitation
- This means that V.G. can reduce the underwater radiated noise
- However, there is a reduction of 2–3% in propulsion efficiency, which makes shipowners and shipyards avoid using them

Vortex generator as an Energy Saving Device

- In nature, birds have vortex generators which helps to increase the lift of the wing.
- In aviation and motor industries, vortex generators are used as high lift device or decrease the drag force

K-V.G.: Combination of wake improvement and energy saving

Technology concept

- Increase the energy efficiency by reducing the hull resistance
- Reduce and improvement propeller cavitation characteristics and its noise by controlling the inflow wake

- The EE and URN targets are weighted depending on the designer's purpose
- Ship propeller noise can also be estimated numerically

- Numerical simulation to determine position, size, angle, geometry and the number of VGs
- Analysis of EE and URN for each case to find the optimal combination

- Performance varies depending on the design of K-V.G. (URN-EE trade-off relationship)
- However, they can both be improved.

	K-VG designs	Wake distribution	EE Improvement	URN reduction
Case 1		District 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.8%/4.0% (Design/Ballast)	Large
Case 2	ion due to GHG regulation		3.7%/5.3% (Design/Ballast)	Medium
Case 3	ion due to one regulation		4.0%/5.7% (Design/Ballast)	Small (-3dB)

Performance Verification (VLCC built in '21)

- Comparison of Energy efficiency & Cavitation pattern
 - Design draft (EE): PSD 2.2%, K-VG 3.0% improvement @ design speed
 - Ballast draft (EE): PSD 4.4%, K-VG 5.8% improvement @ design speed

Ballast draft load condition

Performance Verification (VLCC built in '21)

- Ocomparison of Hull pressure fluctuation & Propeller noise
 - URN & Hull pressure fluctuation is dramatically reduced.

Performance Verification

- Model test were conducted in KRISO & Other research institute
- Improvement propulsion efficiency

Improve propeller cavitation behavior by K-V.G. → reduction of hull vibration & Noise

2~6% propulsion efficiency improvement at model test

300K VLCC (K-V.G.)

300K VLCC (K-V.G.)

Barehull

W/K-VG

1390 * 1397 * 1397 * 1497 * 1497 *

Aframax Tanker (K-V.G.)

Performance Verification

Ship	Propeller Cavitation	EE Improvement	Hull Pressure Fluctuation	URN reduction
50K MR Tanker	Barehull w/ K-VG	1.0%/3.0 % (Design/Ballast)	Full scale BPFs 0.5 kPa 0.5 kPa 0.5 kPa 10.5 kPa	Backst Wick St.
60K Bulk Carrier	Barehull w/ K-VG	4.0%/6.0% (Design/Ballast)	Full scale SPFs Full s	20 dB
300K VLCC	Barehull w/K-VG	3.0%/5.8% (Design/Ballast)	P2 P1 C0 S1 S2 F2 F1 A1 FS1 FS2	19 (g) q) 1992/572

Installation K-V.G. on full-scale ship

Summary

Key takeaways

- In the shipbuilding industry, ship design was focused only on EE due to GHG emission regulations
- If we pay attention to EE-URN improvement technology, we will be able to reduce URN while improving EE
- K-V.G. could be an example
 - : K-V.G. can improve URN and EE simultaneously
- : The performance of K-VG depends on its design concept: there may be a trade-off relationship between EE and URN.

Future work

- Full scale URN measurement w/ K-VG.
- Identification of other mitigation methods that improve both EE and URN

Thank you

