International Ice Charting Working Group

Ice Services Support to Safe Polar Navigation

Presented by Keld Qvistgaard, DMI Greenland Ice Service
E-mail: KQH@DMI.DK

IMO – The Nautical Institute Polar Maritime Seminar 31 October – 01 November 2022
Polar Code requirements

Subset of Part IA Chapter 11 - Voyage planning

11.2 ... the voyage plan shall take into account potential hazards of the intended voyage.

11.3 ... the master shall consider a route through polar waters, taking in to account the following:

.3 current information on the extent and type of ice and icebergs in the vicinity of the intended route;

.4 statistical information on ice and temperatures from former years;
Ice at sea is a major hazard and extremely variable.
The National Ice Services

- Organized under national meteorological services or marine agencies
- Provides a **suite of products** targeted planning, strategic and tactical navigation in ice-covered waters
- Using **agreed standards** approved by World Meteorological Organization
- Reference to SOLAS Chapter V, Regulation 5 and Polar Code
- Ice information to ships via **GMDSS (NAV/METAREAS)**
- **Freely available regional ice information, bulletins** via a variety of communication channels, time critical
- **Local/tailored ice information** for tactical navigation or vessel specific requirements
- **Ice climatology**
- **Routine ice analysis and forecasting**, also outside Polar Code area (Baltic, Grand Banks, …)
- **Guidance, advice** to marine community and authorities
- Sharing best practices
- **Co-production** in certain regions
- **Close collaboration** on user needs, technology advances, production in IICWG
International Standards for Ice-Metocean Information
Maintained / developed by World Meteorological Organization

- WMO No. 259 – Sea Ice Nomenclature Volume I, II, III
- WMO No. 574 – Sea Ice Information and Services
- WMO No. 558 – Manual on Marine Meteorological Services
- WMO No. 471 – Guide to Marine Meteorological Services
- WMO No. 1214 – A Vector Archive Format for Sea Ice Charts
- WMO No. 1215 – Ice Chart Color Code
- JCOMM TR. 80 – Electronic Chart Systems Ice Objects Catalogue
- JCOMM TR. 81 – S-411 Ice Information Products Specifications for ENC
-
Ice information supporting mariners and safe navigation in Polar Waters

- Relevant
- Accurate
- Reliable
- Actual
- Accessible
International Ice Charting Working Group Charter Signatories – Operational Ice Services

<table>
<thead>
<tr>
<th>Country</th>
<th>Ice Service/Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Argentine Naval Hydrographic Office</td>
</tr>
<tr>
<td>Canada</td>
<td>Canadian Ice Service</td>
</tr>
<tr>
<td>Chile</td>
<td>Chilean Navy Weather Service/Ice Service</td>
</tr>
<tr>
<td>Denmark</td>
<td>DMI Greenland Ice Service</td>
</tr>
<tr>
<td>Finland</td>
<td>Finnish Meteorological Institute</td>
</tr>
<tr>
<td>Germany</td>
<td>Federal Maritime and Hydrographic Agency</td>
</tr>
<tr>
<td>Iceland</td>
<td>Iceland Meteorological Office</td>
</tr>
<tr>
<td>Norway</td>
<td>Norwegian Meteorological Institute</td>
</tr>
<tr>
<td>Poland</td>
<td>Polish Institute of Meteorology and Water Management</td>
</tr>
<tr>
<td>Russia</td>
<td>Arctic and Antarctic Research Institute</td>
</tr>
<tr>
<td>Sweden</td>
<td>Swedish Meteorological and Hydrological Institute</td>
</tr>
<tr>
<td>UK</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>USA</td>
<td>US National Ice Center</td>
</tr>
<tr>
<td></td>
<td>USCG International Ice Patrol</td>
</tr>
</tbody>
</table>

Observers: Australia, China, Japan, New Zealand, South Africa

IICWG welcomes participation by private ice services, mariners and offshore operators, Coast Guards, research institutes, et al.

Formed in 1999
International Ice Charting Working Group - 2022

Update from IICWG-XXIII (Buenos Aires, 26-30 September 2022)
Theme: Re-Connecting

Completed tasks
- Iceberg Modelling Case Studies
- Implementation and use of L-band Synthetic Aperture Radar
- Enhanced Ice Information to Mariners
- Development and Test of Iceberg Risk Products
- Test of Sea Ice Pressure products

New/continuing task teams
- Data Assimilation Workshop
- Ice Analyst Workshop
- Roadmap for NAIS Iceberg Model Development
- Sea Ice Pressure Products
- Iceberg Risk Portrayal
- Uncertainty in Ice Charting Products
- Southern Ocean Limit of known Ice
- Multi Spectral SAR in Southern Ocean Ice Charting
- Polar Code POLARIS Practice, Use, Gaps and Opportunities
RISK ASSESSMENT – IMPLEMENTATION OF POLARIS

- **Actual ice conditions**
- **Ice class of ship**
- **Icebreaker escort or independent**

POLARIS

INPUT → **RISK LEVEL** → **OPERATION**

Increasing ice thickness (severity)

RISK INDEX VALUES (RIVs) for each Ice Type

<table>
<thead>
<tr>
<th>Ice Class</th>
<th>Ice Free</th>
<th>New Ice</th>
<th>Grey Ice</th>
<th>Grey White Ice</th>
<th>Thin First Year 1st Stage</th>
<th>Thin First Year 2nd Stage</th>
<th>Thin Second Year 1st Stage</th>
<th>Thin Second Year 2nd Stage</th>
<th>Medium First Year 1st Stage</th>
<th>Medium First Year 2nd Stage</th>
<th>Medium Second Year 1st Stage</th>
<th>Medium Second Year 2nd Stage</th>
<th>Thick First Year</th>
<th>Thick Second Year</th>
<th>Multi-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC 1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>PC 2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>PC 3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>PC 4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>PC 5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>PC 6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>PC 7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>IA5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>IA</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>IB</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>IC</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

IMO Polar Code

- **Risk Index Outcome (RIO)**

 \[\text{RIO} = \sum \text{Partial Ice Concentrations x Risk Values} \]

- **RIO** calculation formula:
 \[\text{RIO} = (C_1 \times \text{RIV}_1) + (C_2 \times \text{RIV}_2) + (C_3 \times \text{RIV}_3) + (C_4 \times \text{RIV}_4) \]

- **C_1, C_2, C_3, C_4**: concentrations of ice types within ice regime (maximum of four from Egg Code)
Towards Sea ice and Iceberg Risk Products (ongoing work in IICWG)

Iceberg Risk

No iceberg risk

Work in progress
Ice services and marine community:
- MAINTAIN, DEVELOP RELATIONS
- ADDRESS CLIMATE CHANGE, OPERATING WINDOWS...
- TECHNOLOGY ADVANCES, POLAR CODE, TRAINING...

THE IDEAL ICE SERVICE (based on IICWG Mariner Surveys)
- Know your user base, interact
- Better resolution and frequent updates and ability to see/report hazardous ice (scale: 100-200m or less, sub-daily updates for certain regions)
- Satellite data must have necessary resolution for ice charting. Kilometer scale resolution should be avoided
- Tailored / high resolution ice information for certain dynamic or critical locations.
- Ice information also as risk assessment
- Local/regional high resolution forecast products for next 24-48 hours for safe/efficient navigation in/near ice.
- Improve access to scalable ice information keep graphical formats for other displays.
- Extended access to automated / annotated satellite quicklooks
- Serve ships where ships go

→ International Collaboration
Thank you