

Background & Needs of the Innovation

3Gt of CO₂e

Africa's ports underperform as trade hubs

Dependency

300 Mt of fuels consumed by shipping annually

Economy

2050's infrastructure is built today

Process

Unique Selling Points

- Solving the issue of sustainable feedstock supply at scale.
- African-borne solution maximising localisation.
- Production and supply adjacent to main trade routes between Asia and Europe.
- Enabling the continued use of the established fossil fuel infrastructure, carbon neutrally.

Accelerate energy access for people of Africa and ensure a Just Energy Transition to low carbon economies.

Reduce emissions & health burden

Improve GDP & trade balance

Creating pull for deep sea trade

Impact on the Labour market

Comparison to other green energy solutions

		Safe to Humans & Nature	No Competition with Food	Energy Density as blend-in Fuel	Ready to Go	Unlimited Scalability
SeaH4	SeaH4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(H ₂	Green H2	\approx	\bigcirc	\bowtie	\bowtie	\bigcirc
·	Batteries	\bowtie	\bigcirc	\approx	\bigcirc	?
NH ₃	Ammonia	\approx	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	HVO	\bigcirc	\bowtie	\bigcirc	\bigcirc	\bowtie
	Ethanol	\bigcirc	\approx	\bigcirc	\bigcirc	\bigcirc
*	Lipid Extraction	\bigcirc	\bigcirc	\bigcirc	\bowtie	?
	Solar	\bigcirc	\bigcirc	\bowtie	\bigcirc	?

^{*} SeaH4's process is inherently different from Lipid extraction from micro-algae

Pioneering socioeconomic development in underdeveloped, low-tono value natural areas

Transformative impact on SDGs

Affordable & Clean Energy

15k t of carbon neutral fuel/a

Climate Action

42k tons/a CO2e

Life under Water

13k t of dissolved CO2

No Poverty

enabling salaries for 1000ppl

Good Health

particle free, NOx and sulphur free

Decent Work & Economic Growth

spearheads for economic hubs & job creation

Reduced Inequalities

Designed for rural coastal communities

Viability of cost

Cost forecast on renewable bunker fuels for shipping

Source: www.sea-LNG.org + SeaH4

Profitability

	Jaques Saade	ValeMax	
Life time	14yrs	30yrs	
Life time CO ₂ savings	1.400.000t	2.100.000t	
Life time CO ₂ savings	133mn EUR	200mn EUR	
Construction Cost	120mn EUR	105mn EUR	
Annual Bunker Cost	33mn EUR	23mn EUR	

Vessel Amortization via

Carbon Credits: 12yrs

Plant Amortization via Bunker Cost: 10yrs

Geostrategic Context

Established Partners

Growth & Development Path

2023

PROTOTYPE PHASE

2x Scientists & 6x management

Outcome:

IP | Detail design for next phase

2025

PILOT PHASE B

125x full staff range

Outcome:

First revenue | Launch of commercial products | Kickoff full scale plant installation | Industry validation

Revenue:

1t of CH₄ | 1t of CO₂ daily

2027

FULL SCALE PRODUCTION

700 - 1 000 full staff range

Outcome:

Achieving profitable operation

Revenue:

15k t/a LNG

13k t/a CO₂

42k t carbon savings/a

2024

2025

PILOT PHASE A

25x management & design

Outcome:

Site selection & procurement | EIA | Licenses & permits for pilot and full scale

PAN-AFRICAN BRANCH OUT

5x development team per country

Outcome:

Breaking ground for additional plants globally to accelerate scale up in MENA region

SC3H4 ALGAE-BASED BIOFUELS

For more information please contact: **Johannes Bochdalofsky**

+27 63 12 66 202

jb@seah4.co.za

www.seah4.co.za